NASA History Overview

November 1st, 2018

A new era in space flight began on April 12, 1981, when Space Shuttle Columbia, or STS-1, soared into orbit from NASA’s Kennedy Space Center in Florida.

The National Aeronautics and Space Administration is responsible for unique scientific and technological achievements in human spaceflight, aeronautics, space science, and space applications that have had widespread impacts on our nation and the world.

Forged in response to early Soviet space achievements, NASA was built on the National Advisory Committee for Aeronautics and other government organizations, as the locus of U.S. civil aerospace research and development.

When NASA opened for business on Oct. 1, 1958, it accelerated the work already started on human and robotic spaceflight. NASA’s first high profile program was Project Mercury, an effort to learn if humans could survive in space. This was followed by Project Gemini, which used spacecraft built for two astronauts to perfect the capabilities needed for the national objective of a human trip to the Moon by the end of the 1960s.

Project Apollo achieved that objective in July 1969 with the Apollo 11 mission and expanded on it with five more successful lunar landing missions through 1972. After the Skylab and Apollo-Soyuz Test Projects of the mid-1970s, NASA’s human spaceflight efforts again resumed in 1981 with the Space Shuttle program that continued for 30 years. The shuttle was not only a breakthrough technology, but was essential to our next major step in space, the construction of the International Space Station.

Over the last 60 years NASA has continued to push the boundaries with cutting edge aeronautics research that has dramatically changed the way we build and fly airplanes. NASA has also completed the reconnaissance of our solar system, with intense investigation of all the planets. Using orbital spacecraft like the Hubble Space Telescope, NASA has also dramatically changed our understanding of the universe around us, as well as our own planet.

NASA’s early work on launch vehicles, communication satellites, and weather satellites has fundamentally changed daily life and created whole new industries. As a catalyst for international cooperation, NASA has also changed how and why humanity conducts space exploration. Now, NASA is preparing to take humankind farther than ever before, as it helps to foster a robust commercial space economy near Earth, and pioneers further human and robotic exploration as we venture into deep space.

The NASA History Office Program publishes a quarterly newsletter, as well as an array of books (print and digital), hosts social media, provides fellowships, and runs the Historical Reference Collection (our version of an archive) to assist the public in finding more information on aeronautical and space history. In addition, the staff produces the Aeronautics and Space Report of the President.

The National Aeronautics and Space Act of 1958 directs NASA to produce an annual report that includes a “comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities” during the preceding year.

Apollo 7: The race heats up

November 1st, 2018

The Apollo 7 prime crew, from left to right, are astronauts Donn F. Eisele, command module pilot, Walter M. Schirra Jr., commander; and Walter Cunningham, lunar module pilot. Photo: NASA

By Bob Granath
NASA’s Kennedy Space Center, Florida

On Oct. 11, 1968, three American astronauts launched to Earth orbit aboard Apollo 7. It was the first piloted mission of the spacecraft designed to meet President John F. Kennedy’s challenge to land on the lunar surface.

The 11-day flight took place as the race to the Moon was heating up between the United States and the Soviet Union. A month earlier, the Soviets launched the unpiloted Zond 5, a simplified version of their Soyuz spacecraft designed for cosmonauts. The capsule became the first to circle around the Moon and return safely to Earth.

Both nations also were recovering from tragic losses. Three Apollo 1 astronauts perished in a launch pad fire on Jan. 27, 1967. That same year, the lone cosmonaut aboard Soyuz 1 died when the spacecraft crashed on April 24.

Following almost two years of Apollo spacecraft redesign and testing, Paul Donnelly, Launch Operations manager at NASA’s Kennedy Space Center in Florida, expressed confidence in the men and women who worked tirelessly to prepare for the flight.

“We have a great group of specialists from government and industry trained to work as a team,” he said. “Just as the astronauts are ready to fly to orbit, we are ready to get them there.”

COMMANDER
Serving as commander of Apollo 7 was NASA veteran Wally Schirra, a U.S. Navy aviator and captain. He flew Mercury 8 on Oct. 3, 1962, and commanded Gemini VI on Dec. 15-16, 1965.

Schirra was joined by two members of the third astronaut class, both making their first spaceflight.

Command module pilot Donn Eisele was a U.S. Air Force colonel and test pilot. Walt Cunningham had been a colonel and fighter pilot in the U.S. Marine Corps Reserve. Although there was no lunar module on this flight, as the third member of the crew, Cunningham was designated LM pilot.

Following a flawless liftoff atop a Saturn 1B rocket from Launch Complex 34 at Cape Kennedy (now Cape Canaveral) Air Force Station, the command-service module (CSM) separated from the second stage. Eisele then practiced a simulated LM docking. During launch with a LM, it would have been housed inside the adapter between the second stage and the CSM.

KEY OBJECTIVE
A key objective of Apollo 7 was testing spacecraft systems, especially the crucial service propulsion system (SPS) engine at the base of the spacecraft. On lunar missions, the SPS would be used to place the spacecraft in lunar orbit and later, fire the crew on a trajectory back home. On Earth orbital flights, the SPS would be fired to slow Apollo for reentry.

The first test of the powerful SPS took place on flight day two. When it fired with 20,500 pounds of thrust, Schirra radioed that it was a real kick.
“Yabbadabbadoo,” he exclaimed in a favorite saying of the television cartoon character Fred Flintstone. “That’s like a ride and a half!”

George Low, manager of the Apollo Spacecraft Program Office at NASA’s Manned Spacecraft Center (now Johnson Space Center) in Houston, later noted that all eight firings of the SPS went extremely well.

“We had a tremendous workout of the service propulsion system,” he said. “I believe that is more than any space propulsion system has ever been used in any one flight”

WORLD WATCHES
Another goal was broadcasting live television from the spacecraft. Three days after liftoff, the Apollo 7 camera was turned on, allowing Mission Control and viewers around the world to watch the crew in orbit.

“I can see Eisele there,” said spacecraft communicator Tom Stafford, a fellow astronaut. “He’s holding a sign and it says, ‘From the lovely Apollo room, high atop everything.’ “

The crew fired the SPS engine on Oct. 22, splashing down in the Atlantic Ocean eight miles from the recovery aircraft carrier, the USS Essex.
After the flight, Schirra described the Apollo CSM as “a magnificent flying machine.”

Lt. Gen. Samuel Phillips, director of NASA’s Apollo Program Office, considered Apollo 7 a perfect mission.

“We were able to accomplish a major step in our progress toward the lunar landing,” he said. “I have every confidence that the progress of this mission will let us accomplish that by the end of next year.”

One Giant Leap For Mankind

November 1st, 2018

Apollo 11 Commander Neil Armstrong working at an equipment storage area on the lunar module.

Official crew photo of the Apollo 11 Prime Crew

July, 1969.

It’s a little over eight years since the flights of Yuri Gagarin and Alan Shepard, followed quickly by President Kennedy’s challenge to put a man on the moon before the decade is out.

It is only seven months since NASA’s made a bold decision to send Apollo 8 all the way to the moon on the first manned flight of the massive Saturn V rocket.

Now, on the morning of July 16, Apollo 11 astronauts Neil Armstrong, Buzz Aldrin and Michael Collins sit atop another Saturn V at Launch Complex 39A at the Kennedy Space Center. The three-stage 363-foot rocket will use its 7.5 million pounds of thrust to propel them into space and into history.

OFF TO THE MOON
At 9:32 a.m. EDT, the engines fire and Apollo 11 clears the tower. About 12 minutes later, the crew is in Earth orbit. After one and a half orbits, Apollo 11 gets a “go” for what mission controllers call “Translunar Injection” — in other words, it’s time to head for the moon. Three days later the crew is in lunar orbit. A day after that, Armstrong and Aldrin climb into the lunar module Eagle and begin the descent, while Collins orbits in the command module Columbia. Collins later writes that Eagle is “the weirdest looking contraption I have ever seen in the sky,” but it will prove its worth.

ALARMS SOUND
When it comes time to set Eagle down in the Sea of Tranquility, Armstrong improvises, manually piloting the ship past an area littered with boulders. During the final seconds of descent, Eagle’s computer is sounding alarms.

It turns out to be a simple case of the computer trying to do too many things at once, but as Aldrin will later point out, “unfortunately it came up when we did not want to be trying to solve these particular problems.”

When the lunar module lands at 4:18 p.m EDT, only 30 seconds of fuel remain. Armstrong radios “Houston, Tranquility Base here. The Eagle has landed.” Mission control erupts in celebration as the tension breaks, and a controller tells the crew “You got a bunch of guys about to turn blue, we’re breathing again.” Armstrong will later confirm that landing was his biggest concern, saying “the unknowns were rampant,” and “there were just a thousand things to worry about.”

FIRST STEP
At 10:56 p.m. EDT Armstrong is ready to plant the first human foot on another world. With more than half a billion people watching on television, he climbs down the ladder and proclaims: “That’s one small step for a man, one giant leap for mankind.” Aldrin joins him shortly, and offers a simple but powerful description of the lunar surface: “magnificent desolation.” They explore the surface for two and a half hours, collecting samples and taking photographs.

They leave behind an American flag, a patch honoring the fallen Apollo 1 crew, and a plaque on one of Eagle’s legs. It reads, “Here men from the planet Earth first set foot upon the moon. July 1969 A.D. We came in peace for all mankind.”

HEADING HOME
Armstrong and Aldrin blast off and dock with Collins in Columbia. Collins later says that “for the first time,” he “really felt that we were going to carry this thing off.”

The crew splashes down off Hawaii on July 24. Kennedy’s challenge has been met. Men from Earth have walked on the moon and returned safely home.

In an interview years later, Armstrong praises the “hundreds of thousands” of people behind the project. “Every guy that’s setting up the tests, cranking the torque wrench, and so on, is saying, man or woman, ‘If anything goes wrong here, it’s not going to be my fault.’”

In a post-flight press conference, Armstrong calls the flight “a beginning of a new age,” while Collins talks about future journeys to Mars.

Over the next three and a half years, 10 astronauts will follow in their footsteps. Gene Cernan, commander of the last Apollo mission leaves the lunar surface with these words: “We leave as we came and, God willing, as we shall return, with peace, and hope for all mankind.”

The Magnificent Marvels of NASA

November 1st, 2018

NASA’s special 747 carries the shuttle above the Johnson Space Center.
Photo Credit: NASA/ Sheri Locke

Sumer Dene with a Space Exploration Vehicle (SEV), which is designed to safely navigate harsh terrain.

By Sumer Dene

Wonder is experienced, it can’t be taught. Through exploration and research, aerospace changes everything. NASA celebrates 60 years of encouraging passionate, dedicated individuals to go above and beyond what they see.

The Johnson Space Center, home of human spaceflight, made Bay Area Houston the thriving waterfront city it is today. Furthermore, NASA is voted year after year the best place to work in the federal government. The International Space Station improves lives through education and innovation to strengthen relationships with academia, government and private sector leaders. The space station is built piece-by-piece in orbit with the help of many nations. The modules are built in separate countries and first meet in space to be assembled. Friday nights at the space station, astronauts and cosmonauts join together to watch movies and share cuisine. They become family with an outlook that reaches beyond our scope.

Astronauts and Cosmonauts enjoy the pre-release of ‘Star Wars: The Last Jedi at the International Space Station.

Educating the world
Improved technology in robotics can lead to minimally invasive surgeries, safer cars, and mass harvesting of fruits and vegetables. Robotics engineer Lucien Junkin says, “The purpose of the Robotics Education program is to gather knowledge and spread it to the public. Failures are meant to teach you; the most important philosophy in engineering is safety, commitment and hard work.” Young adults overcome challenges with collaborative effort to reach competitive goals. NASA offers free educational programs and scholarships to help empower education in STEM. The Robotics Education program is in need of young leaders to build the future in technological development.

The highly-respected professionals involved in aeronautics push forward courageously in pursuit of a new frontier. NASA Public Affairs Officer Gary Jordan develops and hosts Houston’s first space podcast, “Houston, we have a podcast.” The podcast discusses many influential aspects of space travel live at Johnsons Space Center. It is released every Friday with various guests, sometimes including astronauts in orbit. Questions can be asked using hashtags #askNASA and #HWHAP on various social media accounts. “NASA shows that we are all connected. We are on the same mission and happy to explore new ways to make our lives better on Earth. It is important to communicate that with the public. Society is shaped by what we do today.” We have come a long way.

What has changed?
In the early 60s, it was easy to imagine space exploration. The lives of people and how they communicated was vastly different. A peaceful movement began to end all wars, remove barriers and expand consciousness through music and language. The youth wanted to end all wars so people would realize we are all parts to a greater whole. Traveling across the galaxy in an intergalactic world to save the human race was something first seen in black and white fantasy films.

NASA developed in 1958 during a crisis in the last “idealist” time in America. Hate, fear and propaganda spread through the use television and radio. Sixty years later, we long to connect, have our voices heard and be a part of something greater than us. Now, our generation faces many more distractions. “Hope” first begins with “Focus.”

NASA is working on robonauts to help human astronauts complete simple, repetitive and dangerous tasks in space.

The Vision
NASA looks forward to the future with a goal to solve pertinent problems and coexist peacefully. Intensive research help people live a better quality life and find answers to meaningful questions. The space center influences medical and technological advances, as well as society’s culture. Dr. Liz Warren is a NASA scientist who investigates how human physiology changes in microgravity. She leads a team to implement experiments in space. Cells change to a spherical, 3D structure and protein crystals grow perfectly in space, leading to a perfect environment for groundbreaking research in all life and physical sciences.

“Our bodies are capable of enduring and adapting to new environments. We explore because we want to push ourselves further to learn, grow and make an impact. We want the next generation to feel inspired.” Space research discovers ways to combat endemic disease, understand how the planet is evolving, and harness energy and resources sufficiently.

Space exploration has helped us understand human psychology. “The Overview Effect” is coined by Frank White as the cognizant shift in awareness some astronauts experience when viewing earth from the lunar surface. He describes space exploration as the “inevitable steps in the evolution of human society and consciousness.” On Earth, conflicts and differences divide people as our navigation system judges distance from our feet to the ground. Astronauts see 16 sunsets and sunrises each day and orbit earth every 90 minutes. In space, distance is measured expansively as the speed of light. There are no borders to separate the universe and humankind, opportunities are limitless when we work together on a mission.